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A Further information on estimands and estimates

Table A1 shows how the estimands relate to the structure of conjoint datasets. Each esti-

mand is a nested quantity that relates to the structure of the observed data collected via

conjoint designs. As such, each estimand covers increasingly aggregate portions of the

data.

Table A1. Nested causal quantities in a conjoint experiment

Subject Round Profile Attribute . . . y yl′

1 1 1 A . . . 1 0
}

OMCE
}

RMCE
IMCE


AMCE

1 1 2 B . . . 0 1
1 2 1 A . . . 0 0
1 2 2 A . . . 1 0
...

...
...

... . . . ...
...

N 2 1 B . . . 0 1
N 2 2 A . . . 1 1

The above example reflects the structure of observations in the data collected from a conjoint experiment
where the lth attribute has two possible levels (“A" and “B"). y is the observed forced-choice outcome in the
experiment. yl′ is the counterfactual unobserved outcome where the lth attribute is switched. The various
causal estimands relate to different nested sets of observations within the data.

Relaxing the assumption of complete randomisation The main paper specifies the

potential outcomes under the assumption of complete randomisation. Statistically, this

assumption means that every possible combination of values across attributes is equally

likely and there are no prohibited combinations. Not only is this assumption satisfied in

many applications, but it also considerably simplifies the estimation. In some scenarios,

however, researchers may impose restrictions to prevent implausible combinations of at-

tributes. For example, if each profile is a political campaign, the average donation to a

campaign could not exceed the total amount of donations.
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In these cases, as shown by Hainmueller et al. (2014), the AMCE estimand must condi-

tion on the possibility that the remainder of the treated profile and the vector of other pos-

sible treatment options are in the intersection of the supports (T ) of p(Tijk[−l] = t,Ti[−j]k =

t|Tikl = l1) and p(Tijk[−l] = t,Ti[−j]k = t|Tikl = l0), where t is the vector of all other attribute

values for the jth profile in round k, and t is the set of possible vectors of all attributes in

the other profile.

In our framework, by relaxing this assumption, the IMCE estimand becomes:1

τil = E
[
Yijk(tl = l1, · · · )− Yijk(tl = l0, · · · )|(Tijk[−l],Ti[−j]k) ∈ T̃ ,Si

]
,

the RMCE becomes:

τikl = E
[
Yijk(tl = l1, · · · )− Yijk(tl = l0, · · · )|(Tijk[−l],Ti[−j]k) ∈ T̃ ,Si,Rik

]
,

and the OMCE becomes:

τijkl = E
[
Yijk(tl = l1, · · · )− Yijk(tl = l0, · · · )|(Tijk[−l],Ti[−j]k) ∈ T̃ ,Si,Rik,Pijk

]
.

This logic follows from the fact that these quantities are conditional variants of the

AMCE, which itself is conditioned on the joint support of the probabilities of the two

conditional potential outcomes.

B Further information on the BART estimation strategy

As we note in the main text, Bayesian Additive Regression Trees (BART) are a tree-based

machine learning strategy for prediction and classification, developed by Chipman et al.

(2010). In this section, we provide a more detailed explanation of the algorithm for inter-

ested readers.

The underlying principal of BART is that the outcome of interest y can be decomposed
1For the sake of notational simplicity, we replace Tijk[−l],Ti[−j]k in each of the potential outcomes with “· · · ".
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into smaller parts. Therefore, an individual outcome yi can be described as a function of

covariates xi such that,

yi = f(xi) ≈
T∑
t=1

gt(xi) + ϵ, ϵ ∼ N (0, σ2),

where t indexes a set of functions gt that in summation approximate the true data-generating

function f .

In the BART model, each gt is a tree-model, where the input data is recursively subset

using a series of splitting criteria. We call each point where the data is split into two

subsets a non-terminal node. Each non-terminal node has two child nodes, which may

themselves either be non-terminal (i.e. they split the data again) or terminal. A terminal

node represents a final subset of the data, determined by the conjunction of splitting rules

of its ancestors.

The Bayesian aspect of these tree models comes from the fact the model assumes a

prior over the structure of each tree (i.e. the number, position, and splitting criteria of

non-terminal nodes), the terminal node parameters themselves, and an independent error

variance prior. With regards to the tree structure, for example, whether any given node is

non-terminal is determined by the prior probability,

α(1 + d)−β, α ∈ (0, 1), β ∈ [0,∞),

where α and β are hyperparameters that can be specified by the researcher. The default

values set by Chipman et al. (2010) (α = 0.95, β = 2) are designed to heavily constrain

each tree so they are small, which helps prevent the model from overfitting (Hill et al.

2020).

The terminal-node parameters differ substantially from regular tree-based methods.

Unlike in conventional trees where the terminal node parameters of the tree are simply

the conditional expectations of the observations in that partition, in a BART model these
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parameters are defined as random variables. In particular, the prior for each leaf node (i)

in tree (j) is defined as:

µij = N (0, σ2
µ), whereσµ = 0.5/k

√
m,

where m is the number of trees in the model and k is a hyperparameter choice of the

researcher – Chipman et al. (2010) recommend a default value of 2, on the basis of cross-

validation evidence.

Finally, the error variance prior is drawn from an inverse-gamma distribution, with a λ

parameter set using the data, to give a 90% (default) chance that the model will yield a

root mean squared error (RMSE) value lower than from an OLS regression.

There are, as a result of this prior specification, several hyperparameters that can be

specified by the researcher. As several authors note, the cross-validation exercises and

resultant default parameters provided by Chipman et al. (2010) are known to perform

well across a variety of contexts (Kapelner and Bleich 2016; Carnegie and Wu 2019; Hill

et al. 2020). That said, researchers can perform cross-validation of these parameters on

their specific dataset to see if they can achieve better performance.2

Since we sum these individual models, we do not want the models to predict the same

part of the variance of the outcome. Using the metaphor of a forest, we do not want

the canopy of the trees to overlap. Instead, each tree should “develop" (by growing or

shrinking) to cover only that part of the forest canopy not covered by the remaining trees

in the forest. During training, therefore, the algorithm sequentially updates each individual

tree model, conditional on the current performance of the rest of the trees. Specifically,

for each tree t, the model first calculates the “residual variance" (Rt) or the portion of the

2The cjbart package allows users to pass specific hyperparameter arguments (see Sparapani et al. 2021) to
the underlying BART algorithm via the cjbart(...) function.
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variance in y that is not explained by the remaining T − 1 trees:

Rt = y −
∑
j ̸=t

fj(x).

The algorithm then updates the structure of tree t in an attempt to improve perfor-

mance over Rt. To do so, the algorithm probabilistically makes one of the following

changes: splits a terminal node (p=0.25), removes the child nodes of a non-terminal

node (p=0.25), swaps split criteria across two non-terminal nodes (p=0.1), or alters the

splitting criteria for a single non-terminal node (p=0.4). Once a change has been made,

the model decides whether to keep this change using the Metropolis Hastings MCMC al-

gorithm.3

This process is then repeated for every other tree in the model, sequentially, and fi-

nally the model updates the error variance of the model as a whole (σ) (Kapelner and

Bleich 2016). This entire process is repeated k times, as defined by the researcher. As

Chipman et al. (2010) note, since BART only updates one tree at a time, and in sequence,

it is only ever making small changes to the overall prediction, allowing it to fine tune its

performance via small additions and subtractions.

Post-training, predictions are made by taking draws from the model posterior. In prac-

tise, a “draw" is simply the result of passing a covariate vector xi down each tree in the

BART model and summing the results. More formally, a single draw from the trained BART

model can be denoted:

ŷ
(b)
i =

T∑
t=1

ĝt(xi),

where the superscript notation indicates the bth draw from the trained BART model, and

ĝt is the final tth tree-model optimised via the training algorithm discussed above.

As Chipman et al. (2010) show, with sufficient training, the BART model will converge

3Note that this acceptance decision is constrained by Rj but also by the prior state of the tree being updated,
and hence is regularized by the initial priors over the tree structures.
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on the posterior distribution of the true data-generating function. Recall that since the

parameters of the model are random variables, repeated draws using the same covariate

vector will yield different predicted values. Therefore, to generate the final prediction ŷi,

we can repeat this process B times to get a posterior distribution of predictions (typically

1000) and then take the average:

ŷi =
1

B

B∑
b=1

ŷ
(b)
i ,

The set of posterior draws, moreover, can be used to quantify the uncertainty of the

estimate, as discussed in Section 2.1 of the main paper.

C Simulation protocols and further details

C1 IMCE prediction

To test the accuracy of the IMCE predictions, we simulate datasets with two binary at-

tributes where the IMCE is defined with respect to a series of covariates, and across simu-

lations we vary the relationship between these covariates and the IMCE. Since we wish to

benchmark the performance of the model against "known" IMCE values for an attribute,

which crucially is not the change in probability of choosing one profile over another pro-

file, in this simulation exercise we assume independence between all observations. This is

very similar to the assumptions made in a conventional conjoint experiment, from which

the AMCE (and as we argue IMCE) are recovered. Hard-coding this independence into the

data-generating process allows for better control over the size and shape of heterogeneity.

To illustrate this strategy, suppose we observe two covariates – c1 and c2 – that are in-

variant at the individual-level, and randomly assign to each observation two dichotomous

attributes. The first attribute X1 takes values a or b, and the effect of being presented b over

a is the difference between the two individual-level covariates (i.e. τX1 = c1− c2). In other
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words, the marginal component effect of b is heterogeneous, and dependent on individual-

level characteristics. The second attribute X2 takes values c or d, and the marginal effect

of d over c is invariant across individuals. Taken together, we get the following schedule of

IMCEs:

Table C1. Hypothetical correlation between IMCEs and two covariate values: c1 and c2 are
randomly drawn from uniform distributions

i c1 c2 τX1 τX2

1 0.1 0 0.1 0.1
2 0.25 0.05 0.2 0.1
3 0.15 0.15 0 0.1
...

...
...

...
...

I 0.05 0.25 -0.2 0.1

We can then generate an assignment schedule by sampling at random the attribute lev-

els for I×J observations i.e. attribute-level assignments across J rounds of the experiment

on I individuals. Note here that, since we pre-define the IMCEs, we do not sample two

observations per round – since, the IMCE does not reflect the probability of choosing one

profile over another.

Suppose the probability of choosing the profile is calculated as:

P (Yijk = 1) = 0.5 + I(X1 = b)τX1 + I(X2 = d)τX2 .

Given these probabilities, for each individual-round-profile, we have a separate pre-

dicted probability of that profile being "chosen", i.e. an observed outcome of 1. Table C2

presents an example of how these probabilities would be calculated given random assign-

ment of attributes across rounds, and the pre-defined IMCEs in Table C1.

Given Tables C1 and C2, we train the BART model on the actual attribute-level assign-

ments, the observed covariates, and the outcome:

The BART model then estimates the OMCEs (τijk) by making predictions of Y when X1
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Table C2. Random attribute-level assignment, and calculation of probability

i j X1 X2 Calculation Prob Y

1 1 a c 0.5 + 0 + 0 0.5 0
1 2 a d 0.5 + 0 + 0.1 0.6 1
...

...
...

...
...

...
...

I J b c 0.5 +−0.2 + 0 0.3 0

Table C3. Training data for the BART model

i c1 c2 X1 X2 Y

1 0.1 0 a c 0
1 0.1 0 b c 1
1 0.1 0 a d 1
...

...
...

...
...

...
I 0.25 0.05 b c 0

is set to b for all observations and when it is set to a, and deducting these two values, as

demonstrated in Table C4.

Table C4. Calculating the OMCE by deducting the predicted probabilities under the as-
sumption of different attribute-levels

i Ŷ |X1 = b Ŷ |X1 = a τ̂ijkl

1 0.63 0.5 0.13
1 0.71 0.6 0.11
...

...
...

...
I 0.29 0.5 -0.21

Finally, the IMCEs are recovered by averaging the predicted OMCE across observations

for the same individual. For example, for i = 1 the predicted IMCE is:

τ̂il =
1

J × 2
(0.13 + 0.11 + ...) = 0.109...

Given we know the IMCE for this individual is 0.1, the prediction error for this specific

subject is τ̂il − τil ≈ 0.109 − 0.1 ≈ 0.009. We use these prediction errors to assess the
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accuracy of the BART model and corresponding IMCE estimation strategy.

In our actual simulations, we complicate the DGP. We assume that each subject has

three observed covariates: c1 and c2 are continuous covariates drawn from a random uni-

form distribution between 0 and some upper bound of heterogeneity (denoted h); c3 is

a binary variable generated from a binomial distribution with probability = 0.5. We also

assume there is one unobserved covariate, c4, which is normally distributed across subjects

with mean 0 and standard deviation h. We randomly assign draws from each of these

random variables to the 500 subjects.

Table C5 summarises the six scenarios we consider. In short, simulations 1 and 2

consider heterogeneity as a linear function of two observed covariates, varying the size of

the heterogeneity parameter h. In simulation 3, treatment heterogeneity is largely random,

although some small component (20%) is a linear function of the two covariates, and in

simulation 4 heterogeneity is a function of a binary variable. In simulation 5 we simulate

heterogeneity as a function of a missing covariate, and induce some correlation between

an observed variable and this unobserved variable. Finally, in simulation 6, we consider

an exponential function of heterogeneity (testing the predictive flexibility of the BART

model).

For each of 100 iterations, we then generate the data by randomly assigning attribute

levels to 500×5 observations, where each set of five observations correspond to the choices

of a single subject. We calculate the predicted probability p of choosing each profile by

multiplying the individuals’ generated IMCEs by indicator variables for each of the two

binary attributes plus a constant of 0.5 (such that, short of any attribute information,

subjects are indifferent to the profile). We then draw binary outcomes from the binomial

distribution using these predicted probabilities.

For each simulation and each iteration, we calculate the mean absolute error (MAE)

between the BART models’ IMCE prediction and the “true" IMCE. Figure C1 plots the av-
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erage of each IMCE over 100 iterations, for each simulation specification. On average, we

find that the MAE is low across heterogeneity specifications. Both linear, binary, and het-

oregeneity as a function of an unobserved covariate all have mean errors of approximately

0.04 to 0.05. When there is substantial random noise to the heterogeneity (simulation 3)

we find greater error, but still quite low. What we do notice is at the tails of the IMCE

distribution, the BART predicted effects are slightly conservative – as illustrated by the off-

diagonal tails of the comparisons. This should be expected – the data is sparser at these

points.

Figure C1. Average prediction error for each of 500 simulated IMCEs, varying the form of
heterogeneity and its relationship to observed covariates.

Simulation 4
MAE = 0.05

Simulation 5
MAE = 0.04

Simulation 6
MAE = 0.04

Simulation 1
MAE = 0.04

Simulation 2
MAE = 0.03

Simulation 3
MAE = 0.08

−0.2 −0.1 0.0 0.1 0.2 0.075 0.100 0.125 0.150 0.1 0.2 0.3

−0.10−0.050.00 0.05 0.10 −0.02−0.01 0.00 0.01 0.02 −0.02−0.01 0.00 0.01 0.02

−0.2

0.0

0.2

0.0

0.1

0.2

0.3

0.4

−0.050

−0.025

0.000

0.025

0.050

0.00

0.05

0.10

0.15

0.20

−0.2

−0.1

0.0

0.1

0.2

−0.2

0.0

0.2

Predicted IMCE (average)

A
ct

ua
l I

M
C

E

Each panel depicts a separate Monte Carlo simulation, varying how heterogeneity in the IMCEs are defined.
The individual points show the average error of the predicted IMCE across 500 iterations. The facet headings
also report the mean absolute error (MAE) for each IMCE across these iterations.
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C2 Coverage test

To test the uncertainty estimator we propose, we run Monte Carlo simulations in which

we pre-define the IMCEs for each subject and assess the coverage of the resultant credible

interval. As a naive comparison, we also estimate the variance of the IMCE as the simple

mean of the OMCE variances for each subject i, i.e.

V̂(τil) =
1

J ×K

∑
V̂(τijkl)

These IMCEs are themselves defined as normal distributions, where the mean for each

subject is dependent on two subject-level covariates, and some standard deviation param-

eter σi:

τil ∼ N ([C1i − C2i], σi)

C1i, C2i ∼ Uniform(0, c),

where c and σi are parameters set in the simulation.

In each iteration of the simulations, we take j draws from the IMCE distribution of

each subject. These draws constitute the OMCEs for each subject in the experiment. We

simultaneously generate a completely randomised treatment assignment schedule, for the

IMCE attribute and one further dichotomous attribute where the IMCE is held fixed at 0.1

with zero variation. Given this assignment, we calculate the probability of picking each

profile given the drawn OMCEs. We finally transform the outcome into a dichotomous

measure by using the predicted probabilities to take draws from a binomial distribution.

After generating the simulated conjoint data, we calculate the cjbart predicted IMCEs

and record whether or not the predicted interval contains the true IMCE mean, for each

of the three variance estimation strategies. We repeat this process 500 times – generating

new simulated data from the same (fixed) schedule of true IMCEs. We recover a single
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coverage rate for each measure by calculating the proportion of times the simulated IMCE

contains the true population parameter for each hypothetical subject, and then take the

average across these proportions.

To test the robustness of the coverage rate across contexts, we vary the number of

subjects, rounds, the extent of IMCE heterogeneity, and the variance around the IMCE

distributions. Table C6 details the parameter settings used for each of the seven separate

simulation tests we run.

Table C7 reports the coverage rates for the two variance estimation methods. We find

that, across different scenarios, the Bayesian interval produces near nominal simulated

coverage rates. In general, coverage rates tend to be slightly conservative, estimating a

slightly wider interval than necessary. We find, however, that in scenarios 4 and 5 where

we increase the number of subjects, and where the naive estimator substantially underes-

timates the interval, the coverage of the Bayesian interval is closer to 0.95.
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Table C5. Sources of heterogeneity in IMCEs, for each of 6 separate simulations

Sim. fIMCE c Details

1 c1 − c2 cx ∼ Uniform(0, h = 0.2) Effects are lin-
early heteroge-
neous between
−h and h

2 c1 − c2 cx ∼ Uniform(0, h = 0.05) As above, but the
range is much
smaller

3 0.2(c1−c2)+0.8N (0, 0.125) cx ∼ Uniform(0, h = 0.2) Covariates are a
weak predictor of
IMCE heterogene-
ity

4 If c3 = 1, N (0.2, 0.05);
else, N (−0.2, 0.05)

c3 ∼ Binomial(1, 0.5) IMCE is either
positive or nega-
tive dependent on
observed binary
variable

5 c4 ∼ Uniform(0, h = 0.2) c1 = 2 × I(c4 > 0.6h) −
N (0, 0.25)

IMCE is de-
termined by
unobserved co-
variate that also
influences c1.

6 c1 × 2c2 + c2 cx ∼ Uniform(0, h = 0.2) Exponential rela-
tionship between
IMCE and covari-
ates
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Table C6. Simulation specifications testing the coverage rate of the confidence intervals

Sim. Subjects K c σi

1 500 5 0.25 0.05
2 500 5 0.05 0.02
3 500 10 0.05 0.02
4 1500 5 0.25 0.05
5 5000 5 0.25 0.05
6 500 5 0.25 Uniform(0.001, 0.05)
7 500 10 0.25 Uniform(0.001, 0.05)

Table C7. Comparison of coverage rates across the Bayesian and naive intervals.

Sim. Naive Estimate Bayesian

1 0.961 0.974
2 0.995 0.995
3 0.990 0.992
4 0.920 0.939
5 0.875 0.897
6 0.960 0.973
7 0.943 0.959
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C3 RMCE simulation test

In Section 1 of the main paper we note that the RMCE, the marginal effect of an attribute-

level within a specific round of the experiment, can be estimated as the average of the

OMCEs within rounds of the experiment for each individual, rather than over all obser-

vations pertaining to that individual. This quantity can be useful to check whether the

are any carryover or stability assumption violations that are necessary for valid conjoint

analysis.

To check this assumption, we can train our first-stage model including a round-number

indicator, allowing the model to learn any relationship between the outcome, effects, and

rounds of the experiment. We then assess whether the estimated RMCEs correlate with

the round indicator. If there are no carryover effects, in expectation the correlation should

be zero.

To demonstrate this logic, we conducted a simulation where we repeatedly generated

conjoint data where there either is or is not a serial correlation to the marginal effects of

attribute-levels across rounds. Our simulated conjoint experiment contains three attributes

(A, B, and C), each with two-levels (a1, a2, b1, etc.). Each experiment is run for 10 rounds

and 250 subjects, with two profiles per round, and we simulate 100 separate experiments.

Within each round of each experiment, we define two sets of utility calculations to

determine the forced-choice between profiles. In the "round-effect" scenario, the total

utility of the subject i from profile j in round k is defined as:

URound-effect
ijk =N (0, 0.001)

+ 0.5r × I(Aijk = a2)

+ (0.6− 0.1r)× I(Bijk = b2)

+ 0.5× I(Pijk = c2),

where r is the round of the experiment. In other words, the effect of level ‘a2’ increases
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over rounds, the effect of ‘b2’ decreases over rounds, and ‘c2’ has a constant effect.

The utility for the scenario in which there are no round effects, is calculated more

simply as:

UNo round-effect
ijk =N (0, 0.001)

+ 1× I(Aijk = a2)

+ 0.2× I(Bijk = b2)

+ 0.5× I(Pijk = c2).

For each pair of profiles within the experiment, the profile that yields the higher utility

gets assigned 1 and the other profile gets assigned 0. We calculate this separately for the

round-effect and no round-effect utility calculations, yielding two experimental datasets.

We then estimate the OMCEs for each dataset, as detailed in Section 2, including the

round number indicator as a training variable. This allows BART to flexibly use the round

as an effect predictor if it helps refine predictions. In expectation, if there are no carryover

or stability issues, then the round indicator variable should be uninformative. We then

aggregate the OMCEs to the RMCE level by averaging the estimates within each round,

for each hypothetical subject. Finally, we calculate the correlation between the estimated

RMCEs and the round-number.

Figure C2 plots the distribution of these correlation coefficients by scenario and at-

tribute, across the simulated experiments. For the no round-effects condition, each at-

tribute’s distribution is centred on zero as expected – verifying that there is little informa-

tion to be gleaned from the round indicator. For the round-effects scenario, however, there

is a clear positive correlation for attribute A, and conversely a negative correlation for at-

tribute B – clear evidence that the stability and no carryover assumption has been violated.

Most interestingly, the relationship between round and attribute appears to have “leached"

into the RMCE predictions for attribute C, despite the fact that in this scenario the marginal

effect of C is unrelated to the round of the experiment. This clearly demonstrates why en-
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suring this assumption holds is so important – it may lead to biased estimates of attributes

even if they are individually “well-behaved.

C4 OLS method comparison

In Figure 2 in the main paper, we demonstrate the ability of our BART method to effectively

detect simulated heterogeneity. Table C8 reports the resulting correlations between the

covariates and conjoint attributes, across 100 simulations.

Table C8. Average correlations between simulation covariates and conjoint attributes, over
100 simulations

Attribute c1 c2

A1 0.998 0.000
A2 0.004 -0.557
A3 -0.003 0.074

In this section, we replicate this exercise but with the OLS method proposed by Zhirkov

(2022). Given the design requirements of this approach, we modify the simulation exercise

in two ways. First, to ensure adequate power, we increase the number of conjoint rounds

to 20 (with two profiles per round). Second, rather than force a choice between two

profiles (using the defined utility function), we simply rescale the underlying utility to a

0-7 scale, and round the responses to the nearest integer – to mimic a rating-scale conjoint

response. The underlying utility calculation and relationship between the binary (c1) and

interval (c2) covariates are the same as in the main paper.

For each simulated subject we estimate a separate OLS regression model and record

the coefficient for each of the three conjoint attributes (A1-3). Figures C3 and C4 plot the

ordered distribution of the estimated IMCEs, colored by c1 and c2 values respectively.4 As in

4The two figures do include 95 percent confidence intervals, but are very small and thus obscured by the
plotted points. Moreover, in the flat regions, the model is performing poorly and returning essentially
perfect fits.
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Figure C2. Simulation evidence demonstrating how violations of the no carryover assump-
tion can be detected by estimating the RMCE
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our proposed BART method, the OLS method does yield estimates that broadly align with

the defined expectations of the simulation for the binary covariate c1. In panel A1 of Figure

C3, the IMCEs are largely sorted by the value of c1. Note that the smooth continuity of this

distribution, compared to the distribution in the main paper, can be attributed to using a

rating scale outcome rather than the binary forced choice outcome. In Figure C4, although

there is some slight suggestion of a negative correlation, the expected relationship is much

harder to discern visually.

Figure C3. Detecting heterogeneity in IMCEs related to c1 using simulated conjoint data
derived from preferences over profiles, estimated with the OLS IMCE strategy

A3: Random heterogeneity

A1: Binary heterogeneity (c1) A2: Interval heterogeneity (c2)

0 100 200 300 400 500

0 100 200 300 400 500
−3
−2
−1

0
1
2
3

−3
−2
−1

0
1
2
3es

tim
at

e

c1

0 1

As in the main paper, we repeat this simulation exercise 100 times and record the corre-

lation between each predicted IMCE and the two covariates in the design. Table C9 reports

the average correlations between the covariates c1 and c2 and the three distributions of IM-

CEs respectively. There is a substantively large correlation between c1 and A1, although

this correlation is not as strong as observed using the BART strategy in the main paper.

With respect to A2 and c2, we see a much smaller (but nevertheless negative) correlation.

Finally, as expected, we observe negligible correlations between c1 and A2 and A3, and
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Figure C4. Detecting heterogeneity in IMCEs related to c2 using simulated conjoint data
derived from preferences over profiles, estimated with the OLS IMCE strategy

A3: Random heterogeneity

A1: Binary heterogeneity (c1) A2: Interval heterogeneity (c2)

0 100 200 300 400 500

0 100 200 300 400 500
−3
−2
−1

0
1
2
3

−3
−2
−1

0
1
2
3es

tim
at

e

−0.5 0.0 0.5

c2

between c2 and A1 and A3.

It is noteworthy that across both binary and interval covariates, and compared to our

BART approach5, we observe relatively weaker correlations with the covariates, despite

using exactly the same underlying utility function to simulate the hypothetical subjects’

behavior. We suspect this is due to two factors. First, the OLS method cannot incorporate

or model interactions between the individual-level covariates and the attributes (since

there is no variation in these variables within each individual-level dataset). Second, us-

ing an an interval ratings outcome means smaller differences in utility lead to less stark

differences in observed outcomes between profiles.6 Researchers may want to consider

these factors when deciding which outcomes to measure in their conjoint experiment, if

analysing heterogeneity is a key part of the intended analysis.

5As well as the causal forest strategy detailed in Section E.
6This feature is in contrast to a forced-choice design, where even minuscule differences in utility between
profiles result in one observation being assigned an outcome of 1 and the other an outcome of 0.
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Table C9. Average correlations between simulation covariates and conjoint attributes, over
100 simulations

Attribute c1 c2

A1 0.690 -0.002
A2 0.002 -0.156
A3 -0.003 0.000
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D AMCE robustness check: further details and analysis

Hainmueller et al. (2014) conduct a conjoint experiment in which they consider the causal

effects of immigrants’ attributes on local individuals’ attitudes towards these individuals.

The study focuses on nine attributes of immigrants – including education, gender, country

of origin – where the values of these attributes (the levels) are randomised over two pro-

files, and subjects pick which of the two immigrants they would prefer to ‘give priority to

come to the United States to live’ (p.6).

To estimate the AMCEs parametrically, we run a linear probability model (LPM). We

estimate the following model:

ChosenImmigrant = α + β1Education + β2Gender + β3CountryOfOrigin

+ β4ReasonForApplication + β5Job + β6JobExperience + β7JobPlans

+ β8PriorEntry + β9LanguageSkills,

where βk is the vector of coefficients for the l − 1 levels within the kth attribute.

We then supply the same information to a BART model (including the ethnocentrism

covariate embedded in the data) and recover the OMCE/IMCE estimates for each subject

in the data. To aggregate the parameter estimates to the average marginal component

effect, we simply take the average across the IMCEs.7 We then plot these BART-estimated

AMCEs against the parametric AMCEs as shown in Figure 3 in the main text. In Table

D1 we present these same AMCE comparisons numerically, which further demonstrates

the small divergence between parameter estimates for each attribute-level. Note that the

‘Seek Better Job‘ parameter estimate failed to converge under the LPM specification.

Table D2 reports the 95 percent confidence interval and 95 percent credible interval for

the AMCE estimates presented in Table D1. Overall, we find that the 95 percent credible

intervals are slightly wider than the confidence intervals. Readers should note these two

7This can be computed automatically within the cjbart package by calling summary() on the IMCE object.
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Table D1. Comparison of AMCE estimates for the Hainmueller et al. (2014) conjoint
experiment using LPM and cjbart methods

Coefficient Difference

Attribute Level LPM cjbart (% of LPM coefficient)

Education 4th Grade 0.03 0.04 10.59
8th Grade 0.06 0.06 -3.99
High School 0.12 0.12 -2.26
Two-Year College 0.15 0.16 1.23
College Degree 0.18 0.18 0.54
Graduate Degree 0.17 0.17 0.16

Gender Male -0.02 -0.02 -3.69
Country Of Origin Germany 0.05 0.04 -15.70

France 0.03 0.02 -14.79
Mexico 0.01 0.01 -19.85
Philippines 0.03 0.03 -18.62
Poland 0.03 0.03 -11.79
China -0.02 -0.02 -11.27
Sudan -0.04 -0.04 -6.83
Somalia -0.05 -0.05 -6.37
Iraq -0.11 -0.11 -1.61

Reason For Application Seek Better Job -0.04 -0.04 0.03
Escape Persecution 0.05 0.04 -14.14

Job Waiter -0.01 -0.01 -25.49
Child Care Provider 0.01 0.01 -33.60
Gardener 0.01 0.00 -37.07
Financial Analyst 0.04 0.03 -34.89
Construction Worker 0.04 0.03 -27.37
Teacher 0.07 0.06 -8.51
Computer Programmer 0.06 0.05 -20.68
Nurse 0.08 0.07 -9.02
Research Scientist 0.11 0.09 -11.97
Doctor 0.14 0.13 -6.61

Job Experience 1-2 Years 0.06 0.06 -1.87
3-5 Years 0.11 0.11 -0.46
5+ Years 0.11 0.11 -1.24

Job Plans Contract with Employer 0.12 0.12 -3.29
Interviews with Employer 0.03 0.02 -23.21
No Plans to Look for Work -0.16 -0.16 1.43

Prior Entry Once as Tourist 0.06 0.06 0.50
Many Times as Tourist 0.05 0.05 1.41
Six Months with Family 0.07 0.06 -13.29
Once w/o Authorization -0.11 -0.11 1.76

Language Skills Broken English -0.06 -0.06 -0.03
Tried English but Unable -0.13 -0.13 -0.66
Used Interpreter -0.16 -0.16 -0.69
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uncertainty estimates are not directly comparable – the former being a frequentist statistic

and the latter a Bayesian statistic.

Tables D3 and D4 replicate the same exercise for the Duch et al. (2021) data. The

differences in parameter estimates across the two strategies are very small: typically less

than a percentage point and at indistinguishable at two decimal places. These very small

differences are most likely due to the large number of observations in this experiment. As

before, while direct comparison is not possible, we find the credible interval is wider than

the LPM confidence interval.
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Table D2. AMCE uncertainty estimates for the Hainmueller et al. (2014) conjoint experi-
ment using LPM and cjbart methods

LPM cjbart

Attribute Level 95% Conf. Interval 95% Cred. Interval

Education 4th Grade [0.00,0.06] [-0.01,0.08]
8th Grade [0.03,0.09] [0.02,0.10]
High School [0.09,0.15] [0.03,0.17]
Two-Year College [0.12,0.19] [0.08,0.24]
College Degree [0.15,0.21] [0.08,0.25]
Graduate Degree [0.14,0.20] [0.10,0.22]

Gender Male [-0.04,-0.01] [-0.05,0.00]
Country Of Origin Germany [0.01,0.08] [0.00,0.09]

France [-0.01,0.06] [-0.05,0.08]
Mexico [-0.03,0.04] [-0.03,0.06]
Philippines [0.00,0.07] [-0.01,0.08]
Poland [0.00,0.07] [-0.01,0.09]
China [-0.06,0.02] [-0.07,0.03]
Sudan [-0.08,-0.01] [-0.11,0.00]
Somalia [-0.09,-0.02] [-0.11,0.00]
Iraq [-0.15,-0.07] [-0.20,-0.04]

Reason For Application Seek Better Job [-0.06,-0.02] [-0.07,-0.02]
Escape Persecution [0.02,0.08] [-0.04,0.10]

Job Waiter [-0.04,0.02] [-0.07,0.07]
Child Care Provider [-0.02,0.04] [-0.04,0.09]
Gardener [-0.02,0.04] [-0.05,0.10]
Financial Analyst [0.00,0.09] [-0.02,0.13]
Construction Worker [0.00,0.07] [-0.01,0.10]
Teacher [0.03,0.10] [0.01,0.14]
Computer Programmer [0.01,0.11] [-0.02,0.14]
Nurse [0.05,0.11] [0.03,0.15]
Research Scientist [0.06,0.15] [0.00,0.18]
Doctor [0.09,0.18] [0.06,0.21]

Job Experience 1-2 Years [0.04,0.09] [0.02,0.10]
3-5 Years [0.09,0.13] [0.04,0.15]
5+ Years [0.09,0.14] [0.06,0.15]

Job Plans Contract with Employer [0.10,0.15] [0.03,0.20]
Interviews with Employer [0.00,0.05] [0.00,0.05]
No Plans to Look for Work [-0.18,-0.14] [-0.22,-0.10]

Prior Entry Once as Tourist [0.03,0.08] [0.00,0.09]
Many Times as Tourist [0.03,0.08] [0.00,0.09]
Six Months with Family [0.05,0.10] [0.00,0.10]
Once w/o Authorization [-0.14,-0.09] [-0.18,-0.05]

Language Skills Broken English [-0.08,-0.03] [-0.13,-0.01]
Tried English but Unable [-0.15,-0.11] [-0.20,-0.06]
Used Interpreter [-0.18,-0.14] [-0.24,-0.09]
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E Causal Forest alternative estimation

As noted in the main text, our strategy can be generalised beyond the specific BART imple-

mentation that we pursue. One particularly interesting alternative is to use Causal Forests

(Athey and Wager 2019). This strategy follows a similar logic to random forests where

the final prediction is the average over many separate tree-models. Causal forests differ by

using causal rather than decision trees: recursive partitions of the datas where splits are

optimized to find treatment effect heterogeneity. In other words, each tree aims to parti-

tion the data such that the treatment effects within nodes are similar, but the conditional

average treatment effects differ across nodes.

While this approach directly embeds intuitions about treatment effect heterogeneity

into the estimation process, it nevertheless has some limitations compared to our proposed

strategy in the main paper. Causal forests can currently only estimate treatment effects for

binary treatment indicators. In the case of conjoint experiments, therefore, this has two

important implications. First, where conjoint attributes have three or more levels, using

causal forests requires running separate models for each binary comparison between the

reference level and every other level. For example, a five-level attribute would require

running four separate models. Moreover, since the treatment indicator must be binary, any

experimental observations where the Lth attribute is neither the reference or current level

of interest have to be dropped, resulting in fewer training examples.

E1 Simulation test

As in Section 2.2 of the main paper, and in Section C4 of the Appendix with respect to

the Zhirkov (2022) OLS method, we test the causal forest estimation strategy using Monte

Carlo simulation. We use use exactly the same utility specification and design as in the

main paper, where 500 hypothetical subjects make a forced-choice between two profiles
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across 5 rounds of the experiment.

To estimate the IMCEs, and as noted as a limitation above, we run separate causal forest

models for each of the three binary attributes in the simulated conjoint design. Prior to

our main analysis, we also use the causal forests’ inbuilt tuning algorithm to optimise all

hyperparameters. We extract these optimal parameters once, and use them across all the

models we estimate.

Figures E1 and E2 plot the estimated IMCEs by magnitude, colored by the values of

the two covariates c1 and c2 respectively. The results are very similar to the BART analysis

reported in the main paper: the models effectively distinguish both the binary relationship

between c1 and A1, as well as the more complex continuous relationship between c2 and

A2. Table E1 confirms this analysis via Monte Carlo simulation: the causal forest models

correctly detects the designed correlations and otherwise finds negligible relationships, as

we would expect.

Figure E1. Detecting heterogeneity in IMCEs related to c1 using simulated conjoint data
derived from preferences over profiles, estimated with the causal forest algorithm

A3: Random heterogeneity

A1: Binary heterogeneity (c1) A2: Interval heterogeneity (c2)
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Figure E2. Detecting heterogeneity in IMCEs related to c2 using simulated conjoint data
derived from preferences over profiles, estimated with the causal forest algorithm

A3: Random heterogeneity

A1: Binary heterogeneity (c1) A2: Interval heterogeneity (c2)
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Table E1. Average correlations between simulation covariates and conjoint attributes, over
100 simulations estimated with the causal forest algorithm

Attribute c1 c2

A1 0.997 0.002
A2 0.007 -0.582
A3 0.004 0.070

E2 Applied test

To explore whether our results in the main paper are robust across estimating strategies,

we ran a causal forest model to estimate the IMCEs for the low income attribute-level

of the conjoint experiment. We first tune and train a causal forest model using the grf

package in R (Tibshirani et al. 2022), where the outcome is the binary choice variable,

the treatment variable is a binary indicator for the income attribute-level, and we supply a

training matrix of the other conjoint attributes plus the same covariates used in the BART

models. All observations where subjects were assigned the “Highest 20% income level"

were dropped prior to training, due to the limitations mentioned above.
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Figure E3. Comparison of IMCEs for the “Lowest 20% income level" attribute-level ordered
from smallest to largest and corresponding histogram of individuals’ self-reported ideology,
using the causal forest estimation strategy
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This causal forest model does not account for subject-level clustering of observations (see Figure E4).

Unlike in our BART strategy, the causal forest algorithm automatically returns pre-

dicted treatment effects rather than predicted outcomes. We therefore directly aggregate

the output of the causal forest model (OMCEs) to the level of IMCEs by averaging these

predictions for each individual separately.8

Figure E3 plots these IMCEs and the corresponding histogram of ideology values for

every subject in the experiment. These results follow the same pattern as those presented

in the main paper, with ideology clearly inversely related to the magnitude of the IMCEs:

more right-leaning subjects have smaller (albeit positive) IMCEs.

8Since variance estimation in causal forest uses a bootstrap of little bags (Athey et al. 2019), aggregating the
uncertainty estimates from the level of observation to the level of the individual is beyond the scope of this
paper.
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Causal forests also provide an in-built and simple variable importance measure (VIMP),

by calculating a weighted sum of the number of times each covariate is used to split the

data across all the trees in the forest. This measure is different from our BART strat-

egy, since in the causal forest case (and like with random forests) one can rely on the

independence of the estimates from each separate tree. In BART, since the trees are non-

independent (they are trained to model the residual variance of the T − 1 other trees),

interpreting split criteria directly is more challenging. Therefore, it is worth inspecting

how this intrinsic model metric from the causal forests algorithm identifies important co-

variates.

Table E2 reports the VIMP scores for the covariate attributes in the model. For cate-

gorical variables, each dummy factor is assigned a separate score and so we sum these to

get an importance measure for each covariate. Similar to our analysis in the main paper,

subject ideology is identified as an important predictor. The causal forest importance mea-

sure diverges from our own in two ways. First, the causal forest does not identify subjects’

country as an important predictor. We believe this difference is due to the fact that, for

our random forest based measure in the main paper, the trees are able to split on multiple

levels of the categorical variable at single decision nodes (as shown in Figure 5.) As a

result, our variable importance measure regularises itself by collapsing levels of categor-

ical variables. This is not possible in the causal forest measure since each node can only

split on one level at a time. Second, and perhaps relatedly, the causal forest measure iden-

tifies subjects’ age as an important feature. We are unsure precisely why this difference

exists, but we note that theoretically the importance measures are quite different (see the

discussion in Section 3.1), which may contribute to the divergence in scores.

Overall, these results help demonstrate two claims. First, that it is possible to substitute

the BART-specific implementation we discuss in the main paper with alternative OMCE

estimation strategies. Second, that our main substantive results appear robust to different
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Table E2. Variable importance scores for the “Lowest 20% income level" attribute-level,
using the intrinsic measure from the causal forest fitting algorithm

Covariate Variable Importance

Country 0.010
Education 0.046
Gender 0.041
Hesitancy 0.067
Ideology 0.131
Income 0.027
Mandatory Vaccination 0.090
Age 0.130
WTP Access 0.047
WTP Private 0.052

ML estimating strategies, providing further evidence of their robustness.

Finally, one advantage of causal forest estimation is the ability to model the subject-

clustering component of conjoint designs by supplying the subject identifiers to the algo-

rithm (see Athey et al. 2019). We can therefore assess whether deliberately clustering af-

fects our findings by comparing the results presented in Figure E3 with a clustered-variant

(as shown in Figure E4). Substantively, the results are very similar. The distribution of

right-leaning subjects stretches slightly further along the IMCE distribution, and the most

extreme IMCEs are slightly larger, but not drastically so and do not affect our interpretation

of the results.
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Figure E4. Causal forest estimation of IMCEs for the “Lowest 20% income level" by subject
ideology, accounting for subject-level clustering of observations
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F Example of pIMCE estimation

In Section 2.4 of the main paper, we extend the logic of the IMCE to cases where we do not

assume that possible profiles are distributed uniformly. In particular, we adapt the logic

of de la Cuesta et al. (2022) by weighting the IMCE potential outcomes by the marginal

distributions of the attributes in the population of interest.

To demonstrate this approach empirically, we consider a hypothetical case where we

alter the marginal distributions of the age, income, and vulnerability attributes based on

their distribution in US adult population. Table F1 summarises the population marginals

we use. To make our hypothetical scenario more realistic, we approximate the distribution

of age categories using the American Community Survey, by summing the proportion of

US adults whose age is closest to each attribute-level in the Duch et al. (2021) design.9

For the proportion of vulnerable adults, we use data provided by the Henry J Kaiser Family

Foundation, which found that 37.6% of US adults had a higher risk of serious illness due

to COVID-19.10 We divide this percentage equally between the two higher vulnerability

attribute-levels. For income, since the lower (upper) level refer to the 20% lowest (highest)

income levels, we follow these distributions in the marginal distribution of age. For the

remaining two attributes, we assume uniform distributions.

We first inspect the pIMCEs for the 65 year-old attribute-level, which our original anal-

ysis suggested was correlated with subjects’ own age. Figure F1 plots a comparison of the

pIMCE estimates against the original (unweighted) IMCEs generated from our standard

strategy, for each US respondent in the Duch et al. (2021) data. While we do not see sub-

stantially different estimates using the pIMCE strategy, there is a notable compression of

effect sizes into three distinct clusters. Figure F2 confirms this analysis: while the pIMCE

9The ACS categories do not perfectly align with the conjoint age levels, so these proportions are approximate.
We also scale the proportions to consider only US subjects aged 15 years and older.

10https://www.kff.org/coronavirus-COVID-19/issue-brief/how-many-adults-are-at-risk-of-serious-illness-if-
infected-with-coronavirus/ [Accessed 16th August 2022].
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Table F1. Assumed marginal distributions of attribute-levels in the population

Attribute Level Marginal Probability

Vulnerability Average 0.62
Moderate 0.19
High 0.19

Transmission All 0.33
Income Lowest 20% 0.20

Average 0.60
Highest 20% 0.20

Occupation All 0.13
Age 25 years old 0.33

40 years old 0.31
65 years old 0.22
79 years old 0.14

effects are slightly more extreme at either tail of the distribution, by and large they follow

the same sort of pattern and magnitude. The jumps in the pIMCE line reflect the clustering

of effect sizes seen in Figure F1. As shown in the bottom panels of Figure F2, however, the

distribution of these estimates across both the IMCEs and pIMCEs correlate similarly with

subjects’ age: the strongest effects are for older respondents who are closer to the age of

the attribute-level in question, consistent with our theoretical expectations.

Figures F3 and F4 repeat this exercise for the “High risk" transmission attribute-level in

the conjoint experiment. We use the same marginal distributions as presented in Table F1.

Here we see only minor differences between the IMCEs and pIMCEs for subjects. Similarly

the effects distribution, while clearly heterogeneous, does not correlate anywhere near as

strongly with subjects’ age (compared to when analysing the age attribute).
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Figure F1. Comparison of each US subjects’ pIMCE estimate for the “65 years old"
attribute-level, against the standard IMCE estimate
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Figure F2. Comparison of the distribution of subjects’ age against PIMCE and IMCE esti-
mates for the “65 years old" attribute-level

Shaded areas around the IMCE/pIMCE lines indicate the respective 95% credible intervals.
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Figure F3. Comparison of each US subjects’ pIMCE estimate for the “high risk" transmis-
sion attribute-level, against the standard IMCE estimate
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Figure F4. Comparison of the distribution of subjects’ age against PIMCE and IMCE esti-
mates for the “high risk" transmission attribute-level

Shaded areas around the IMCE/pIMCE lines indicate the respective 95% credible intervals.
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G Additional figures

Figure G1. Detecting heterogeneity in IMCEs using simulated conjoint data derived from
preferences over profiles (continuous covariate)

A3: Random heterogeneity

A1: Binary heterogeneity (c1) A2: Interval heterogeneity (c2)
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Figure G2. IMCE predictions by ideology values, using models on trained k = 5 random
batches of the full experimental data
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Figure G3. IMCE predictions by ideology values, for the “65 years old" attribute-level
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